Category Problems

work – 31 –

Problem Prove that – P.S. It is straightforward holder, but what about a solution by Cauchy or AM-GM ? Solution By, AM-GM we have , Write up analogous inequalities, and add to get – which re-arranges to the desired question ­čÖé Advertisements

work 028 – SII Vol.1

Problem Prove that for positive reals with sum 1 , Proof Homogenize the inequality to – Since the inequality is cyclic, let Substitute – and let , The inequality by the above substitution is transformed to – By AM-GM inequality , therefore the inequality is true with equality which gives us the equality cases –

work 027 – mathlinks user CSS-MU

Problem Let be nonnegative numbers, no two of which are zero. Prove that: Proof It is equivalent to – Therefore , Let , So, and also note that – thus the inequality is proved.

work 026 – CRUX Mathematicorum

Problem For positive reals prove that – Proof Let then the inequality is equivalent to – Obviously we have that – (since ) Also by AM-GM , multiplying these two we get the result with equality holding when

work 025 – Reflections issue 2010 : S 147

Problem Let . Prove that the following inequality holds – ┬á ┬áMy Solution ┬áSet , and similarly that for any , where, we thus have that – ┬áThus, Therefore we have , ┬áThus it is sufficient to prove that – By Holders’ Inequality , Equality occurs when Hence our proof is completed.

Own Inequalities

Problem 1 Show that positive reals such that,, Problem 2 Prove that the following inequalities hold for all┬á a,b,c – sides of a triangle Problem 3 Prove that for positive reals positive reals, Problem 4. ┬áProve that for positive reals a,b,c the following inequality holds good – Problem 5. Prove that for positive reals the […]

work 024 – mathlinks user wya

Problem Let be positive real numbers. Prove that Proof Let therefore , we have to prove that – which is true by C-S ­čÖé Equality hold for $x=y=z$ .